Number	Round to 1sf	Round to 2sf
1628	2000	1600
247		1
₱ <u>5</u> 209 —	5,000 = 5×103	5209 = 5200 = 52×103
1643		
18		
5.38		
2.73		
0.726		
0.319		
0.463	1 2	-2
0.0183	0.0183 = 0.02	0,0183 = 0,018
0.0736	Υ	
3847		
629		
18.29		
0.8273		
1.347		
2.636		
0.1937		
0.038		
13.473		
1758.2		

Exponent	+	u	5
· · · · · · · · · · · · · · · · · · ·		\sim	

Exponent - RUU

Express each number in standard form.

1. $2,40000^{4}$ 24000	2. 9.0×10^3
3. 4.385×10^7	4. 1.03 \times 10 ⁸
5. $3.05 \times 10^2 = 305$	6. 5.11×10^{10}
7. 6.000032×10^{6}	8. 1.0×10^{1}
9. 8.75×10^5	10. 8.49 × 10 ⁻² ≤ .0849
11. 7.1 × 10 ⁻⁶	12. 1.0 \times 10 ⁻³
13. 4.39×10^{-7}	14.01.25 × 10-4= .000125

Express each number in scientific notation.

	>1 Exponent +	< 1 Exponent -
15.	40,000	16. 16
17.	876,000,000. = 8.76×108	18, 4500
19,	$151. = 1.51 \times 10^{2}$	20. 0.00037
21,	83,000,000	22. 919,100
23.	5,000,000,000,000	24. 0.13
25,	0.0000007 7×10	26. 0.0067 6.7 × 10

Material	Pure Substance or <mark>Mixture</mark>	Element, Compound, Homogeneous, Heterogeneous
concrete	mixture	He tero ceneous
sugar $+$ pure water (C ₁₂ H ₂₂ O ₁₁ + H ₂ O)	mixture	Homogeneous
iron filings (Fe)	Pure Substance	element
limestone (CaCO ₃)	Pure Substance	Compound
orange juice (w/pulp)	mixture	Heterogeneous
Pacific Ocean	mixture	Heterogeneous
air inside a balloon	mixture	gas - Homogeneus
aluminum (Al)	pure Substance	Element
magnesium (Mg)	Jure Substance	Element
acetylene (C ₂ H ₂)	pure Substance	Compound
Hzo and Malz and Naci and	Mixture	Homogeneous
soil		J
pure water (H ₂ O)		
chromium (Cr)		
Chex mix		
salt + pure water (NaCl + H ₂ O)	mixture	
benzene (C ₆ H ₆)		
muddy water		
brass (Cu mixed with Zn)		
baking soda (NaHCO ₃)		

PHYSICAL AND CHEMICAL PROPERTIES AND CHANGES

Name _____Key____

PHYSIC 1. observed 2. determin Boiling dens. L	AL PROPERTY with senses ed without destroying matter Points, Michtry Point, , Color, Viccosity	CHEMICAL PROPERTY indicates how a substance reacts with something else matter will be changed into a new substance after the reaction 	
Identify t P 1. b P 2. d 3. ft 4. s 5. rd 7. s	he following as a chemical (C) or phy lue color lensity lammability (burns) olubility (dissolves) eacts with acid upports combustion our taste	<pre>sysical property (P): "Burning, reaction</pre>	ng or reaction
PHYSI 1. a char 2. no ne	cal change or state nge in size, shape, or state w substance is formed	CHEMICAL CHANGE a change in the physical and chemical properties a new substance is formed 	
Identify t <u>1. Na</u> <u>2. Ag</u>	he following as physical (P) or chemi aCl (Table Salt) dissolves in water. g (Silver) tarnishes 2 Ag + O2 -> Ag 2 C	ical (C) changes. 9. Milk sours. 10. Sugar dissolves in water.	

\sim 2. Ag (Silver) tarnishes \sim \sim \sim \sim \sim \sim \sim	10. Sugar dissolves in water.
3. An apple is cut.	11. Wood rots.
4. Heat changes H ₂ O to steam.	12. Pancakes cook.
5. Baking soda reacts to vinger.	13. Grass grows.
<u>6</u> . Fe (Iron) rusts. 4Fe + 302 - 7 (Fe ₂ 03	\mathbf{P}_{14} . A tire is inflated.
7. Alcohol evaporates .	15. Food is digested.
\mathbf{P}_{8} . Ice melts.	16. Paper towel absorbs water.

Physical and Chemical Changes

Part A

Can you recognize the chemical and physical changes that happen all around us? If you change the way something looks, but haven't made a new substance, a **physical change** (P) has occurred. If the substance has been changes into another substance, a **chemical change** (C) has occurred.

1.	An ice cube is placed in the sun. Later there is a puddle of water. Later still the puddle is gone.
2.	Two chemical are mixed together and a gas is produce.
3.	A bicycle changes color as it rusts.
4.	A solid is crushed to a powder. Puysi cal
5.	Two substances are mixed and light is produced. Cheu: col
6.	A piece of ice melts and reacts with sodium.
7.	Mixing salt and pepper.
8.	Chocolate syrup is dissolved in milk.
9.	A marshmallow is toasted over a campfire.
10.	A marshmallow is cut in half.

Part B

Read each scenario. Decide whether a physical or chemical change has occurred and give evidence for your decision. The first one has been done for you to use as an example.

	Scenario	Physical or Chemical Change?	Evidence	
1.	Umm! A student removes a loaf of bread hot from the oven. The student cuts a slice off the loaf and spreads butter on it.	Physical	Cut Bread Welted butter	
2.	Your friend decides to toast a piece of bread, but leaves it in the toaster too long. The bread is black and the kitchen if full of smoke.	Chemical	Burned the bread bread + 02 -> Burnt-	toast
3.	You forgot to dry the bread knife when you washed it and reddish brown spots appeared on it.			
4.	You blow dry your wet hair.			
5.	In baking biscuits and other quick breads, the baking powder reacts to release carbon dioxide bubbles. The carbon dioxide bubbles cause the dough to rise.			
6.	You take out your best silver spoons and notice that they are very dull and have some black spots.			
7.	A straight piece of wire is coiled to form a spring.			
8.	Food color is dropped into water to give it color.			
9.	Chewing food to break it down into smaller particles represents a change, but the changing of starch into sugars by enzymes in the digestive system represents a change.			
10.	In a fireworks show, the fireworks explode giving off heat and light.			

Part C: True (T) or False (F)

1.	Changing the size and shapes of pieces of wood would be a chemical change.
2.	In a physical change, the makeup of matter is changed.
3.	Evaporation occurs when liquid water changes into a gas.
4.	Evaporation is a physical change.
5.	Burning wood is a physical change.
6.	Combining hydrogen and oxygen to make water is a physical change.
7.	Breaking up concrete is a physical change.
8.	Sand being washed out to sea from the beach is a chemical change.
9.	When ice cream melts, a chemical change occurs.
10.	Acid rain damaging a marble statue is a physical change.

- mass 116=453.6g 4 SF
- length lin = 2.54 cm Exact

SI System
Tera T
$$x_{10^2}$$

Griga G x_{10^3}
Mega M x_{10^4} | Mn = 1 x_{10^6} m
Kilo K x_{10^3} | Kn = 1 x_{10^6} m or 1 kn = 1000 m
Deca D x_{10^1}
Deca D x_{10^1}
Deca D x_{10^2} | cm = 1 x_{10^2} m or 100 cm = 1 m
Milli m x_{10^3} | mm = 1 x_{10^6} m or 1000 mm = 1 m
Micro μ x_{10^6} | μ m = 1 x_{10^6} m
Nano n x_{10^7}
fewto f $x_{10^{-12}}$

The bromine content of the ocean is about 65 g of bromine per million g of sea water. How many cubic meters of ocean must be processed to recover 500. mg of bromine, if the density of sea water is 1.0×10^3 kg/m³? (Answer: 7.7×10^{-3} m³)

If 20.0 g of coal are burned, heating 1.00 L of water, how much hotter will the water get? Assume all of the heat lost by the coal is gained by the water. (Answer: 129 °C)

Additional information: Density of water, 1.00 g/mL; specific heat of water, 4.184 J/($g^{\circ}C$); heat of combustion of coal, 27.00 MJ/kg.

Atous & molecules are so small that we group to deal with in a meaningful way 12 eggs = 1 dozen eggs dozen = 12 1 × 12 eggs 1 mole = 6.022 × 10²³ 1 mole = 6.022 × 10²³ 1 mole = 1 × 6.022 × 10²³ atoms × 6.022 × 10²³ 1 mole of atoms = 1 × 6.022 × 10²³ molecules 3.72 moles of axygen atoms = 3.72 × 6.022 × 10²³ and atoms Group Individual

mole A -> mole B

How many moles of H are in 6.72 mole of H20?

How many atoms of
$$H$$
 are ~ 6.72 note
 H_{2O} .
 $GA \longrightarrow mole A \longrightarrow mole B \longrightarrow gD$
 $f \longrightarrow 1 mole H = 6.022 \times 10^{23} atoms H$
 $atoms r \longrightarrow 1 mole H_{2O} \times \frac{2}{1} \mod H \times \frac{6.022 \times 10^{23} atoms H}{1 \mod H_{2O} \times 10^{23} atoms H}$
 $G.72 \mod H_{2O} \times \frac{2}{1} \mod H \times \frac{6.022 \times 10^{23} atoms H}{1 \mod H_{2O} \times 10^{23} atoms H}$
 $G.72 \times 2 \times 6.022 \times 10^{23} = 8.09(3568 \times 10^{24} atoms H)$
 $\times \times E_{EE} = \frac{8.09 \times 10^{24} atoms H}{1 \mod 10^{24} atoms H}$

How many grams does 2.903 notes of Carbon weigh ?

What is the molar mass, the mass of Inde in graws, of H_{20} Find mass of each part I mole $H_{20} = 2$ mole $H \times \frac{1.005 \text{ g} \text{ H}}{1 \text{ mole } \text{ H}} = 2.016 \text{ g} \text{ H}$ I mole $H_{20} = 2$ mole $H \times \frac{16.00 \text{ g} \text{ O}}{1 \text{ mole } \text{ H}} = 10.00 \text{ g} \text{ O}$ $\frac{16.009 \text{ g}}{1 \text{ mole } \text{ O}} = 16.00 \text{ g} \text{ O}$ $\frac{16.009 \text{ g}}{1 \text{ mole } \text{ O}} = 18.02 \text{ g} \text{ H}_{20}$ I mole $H_{20} = 18.02 \text{ g} \text{ H}_{20}$ $18.02 \text{ g/mole } \text{ H}_{20}$

How many grams of hydroxyapetite $Ca_5(PO_4)_3(OH)$ are in 0.00234 mol?

$$5 C_{a} \times \frac{40.08 g C_{a}}{1 \text{ mole } C_{a}} = 3 P \times \frac{30.97 g P}{1 \text{ mole } P} = 12 0 + 1 = 13 0 \times \frac{16.00 g 0}{1 \text{ mole } 0} = 1 H \times \frac{1.008 g}{1 \text{ mole } H} = 1000 \text{ mole } 0$$

$$200.4$$

 92.91
 208.00
 $+ 1.008$
 $502.318 g/mole$
 $502.3g/mole$
 $502.3g/mole$
 600

$$gA \rightarrow \text{prole } A \rightarrow \text{prole } B \rightarrow gB$$

$$3 = 0.0023 \text{ trole } Ca_{5}(TO_{4})_{5}(OH) \times \frac{502.39}{1000} Ca_{5}(TO_{4})_{5}(OH)$$

$$= 1.175382 \text{ so}(TO_{4})_{5}(OH)$$

$$= 1.18 \text{ s}(Ca_{5}(TO_{4})_{5}(OH)$$

Office hours	1:30-2:30 Tile 10-11
	office heur link in convas in 1st module